
Free-Fall Framework (FFF) and the Double-Slit Experiment 

FFF uses Spacetime (position-time, classical) and Timespace (momentum-energy, quantum) 

linked via the Fourier transform. The Fourier transform underpins Heisenberg’s uncertainty 

principle (Δx · Δp ≥ ħ/2), which is central to the double-slit experiment’s wave-particle duality. 

Information is preserved across Spacetime and Timespace, even during interactions like 

measurement. This ensures that the system’s state (wavefunction) remains fully describable, 

with measurement redistributing information between position and momentum. 

FFF treats forces not as traditional vector sums but as adjustments to maintain the free-fall state 

(∑si = 1). In the double-slit experiment, interactions (e.g., particle-slit, particle-detector) adjust 

the normalized influences, affecting the observed outcome. 

Pre-Interaction State (Particle Approaching Slits)  

Before reaching the slits, a particle (e.g., an electron) exists in a free-fall state defined by its 

scaling parameter λ, which is small due to the quantum scale (λ ~ 10-10 m for electrons). The 

particle’s state is described in both Spacetime (position-space wavefunction ψ(x, t)) and 

Timespace (momentum-space wavefunction ψ̃(k, ω)), linked by the Fourier transform. The 

wavefunction ψ(x, t) encodes a broad range of possible positions, reflecting a large Δx, while 

ψ̃(k) has a narrow Δp, consistent with Heisenberg’s uncertainty principle. 

Interaction (Particle Coupling with Slits) 

Interaction between the particle and the slits is modeled as a coupling of two systems with 

distinct λ-values: the particle (λparticle ~ 10-10 m) and the slits (macroscopic, λslit >> 1). The FFF 

posits that this interaction adjusts the system to a new effective scaling parameter λeff, 

determined by a function λeff = f(λparticle, λslit, Δx, Δt). 

Without Measurement (Wave-Like Behavior)  

In Spacetime, the particle’s wavefunction ψ(x, t) splits into two components, each passing 

through a slit. These components interfere, producing the characteristic interference pattern on 

the screen. The Fourier transform maps this to Timespace, where the momentum distribution 

ψ̃(k) reflects the superposition of momentum states corresponding to both slit paths. 

The small λeff ensures that quantum effects dominate, with sem governing the wave-like 

propagation. The Scaling Transformation Symmetry preserves the action, ensuring that the 

interference pattern is consistent across scales. 



A superposition of paths preserves all information about the particle’s state. The Fourier 

transform ensures that the position-space interference pattern corresponds to a well-defined 

momentum-space distribution, with no information loss. 

An interference pattern emerges because the system maintains its free-fall state (∑si = 1) 

without a measurement forcing a specific path, allowing the wavefunction to evolve coherently. 

With Measurement (Particle-Like Behavior)  

When a detector measures which slit the particle passes through, the interference pattern 

collapses to a particle-like pattern. The measurement introduces a new interaction between the 

particle, slits, and detector (macroscopic, λdetector >> 1). This interaction forces a rapid 

adjustment of the free-fall state, updating λeff to reflect the measurement’s influence. The 

detector’s large λ shifts the system toward a classical regime, where sem still dominates but the 

wavefunction collapses. 

In Spacetime, the wavefunction ψ(x, t) collapses to a state localized at one slit (e.g., ψ(x) ≈ δ(x - 

x_1)). The Fourier transform maps this to Timespace, where the momentum distribution ψ̃(k) 

broadens (Δp increases), satisfying Δx · Δp ≥ ħ/2. This reflects the loss of interference due to 

precise position measurement. 

Information is conserved during collapse. The measurement redistributes information from a 

superposed state (both slits) to a definite state (one slit). In Timespace, the broad ψ̃(k) encodes 

the particle’s momentum correlations, ensuring that the system remains fully describable. 

The measurement’s large λdetector forces λeff to increase, reducing the influence of quantum 

superpositions and emphasizing classical, particle-like behavior. The free-fall state adjusts so 

that ∑si = 1, with sem governing the particle’s trajectory post-measurement. The particle-like 

pattern (two bands) results from the measurement’s disruption of the coherent superposition, 

rebalancing the free-fall state to favor a localized outcome. 

Post-Interaction State (Detection at the Screen)  

After passing the slits, the particle reaches the detection screen. The screen detects the particle 

at a position determined by the interference of the two slit paths. The probability distribution 

|ψ(x)|^2 reflects the wave-like interference, governed by sem and the small λeff. The Fourier 

transform ensures that the momentum distribution in Timespace is consistent with the 

observed pattern. 

The screen detects the particle in one of two bands, reflecting the collapsed wavefunction. The 

large λeff post-measurement ensures a classical trajectory, with sem dominating and other forces 

negligible. 



In both cases, the detection process preserves information. The screen’s measurement (large λ) 

maps the final state to a definite position in Spacetime, with the corresponding momentum 

distribution in Timespace preserving the system’s full description via the Fourier transform. 

Implications 

FFF reframes the double-slit experiment as a manifestation of dynamic equilibrium adjustments. 

The duality arises from the interplay of Spacetime (position, wave-like) and Timespace 

(momentum, particle-like) descriptions, linked by the Fourier transform. The scaling parameter 

λ determines whether wave-like (small λ) or particle-like (large λ) behavior dominates. 

Measurement is an equilibrium adjustment driven by the detector’s large λ, forcing the system 

to a new λeff that favors classical outcomes. This avoids invoking a mysterious “collapse” by 

framing it as a natural rebalancing of the free-fall state. 

The conservation of information ensures that the transition from interference to particle-like 

behavior is lossless, with the Fourier transform mediating the redistribution of information 

between position and momentum. 

FFF unifies classical and quantum interpretations by treating the double-slit experiment as a 

scale-dependent phenomenon. Small λ emphasizes quantum coherence (interference), while 

large λ (via measurement) enforces classical localization. 

Unlike quantum mechanics, which treats forces (e.g., electromagnetic) as operators, the FFF 

views them as adjustments to maintain ∑si = 1, providing a unified force framework. FFF’s use of 

Spacetime and Timespace, linked by the Fourier transform, formalizes the wave-particle duality 

in a way that aligns with quantum mechanics but extends to include all forces. 

The FFF avoids the measurement problem’s ambiguity by treating measurement as an 

interaction that adjusts λeff, consistent with quantum mechanics’ outcomes but grounded in a 

physical mechanism. Both frameworks preserve information, but FFF explicitly ties this to the 

free-fall state and scaling symmetry, offering a potential resolution to information paradoxes 

(e.g., in black hole analogs). 

See paper for further context: The Law of Universal Free-Fall: A Unified Framework Through 

Scaling Transformation Symmetry and Information Conservation 


